Central Maui Ground-Water Availability Study

April 21, 2005

Study Objectives

- Improve understanding of regional flow
- Estimate ground-water recharge
- Estimate effects of selected pumping scenarios on the ground-water system

Study Approach

- 1. Analyze existing data
- 2. Collect climate, ground-water, and streamflow data
- 3. Compute recharge with a water budget
- 4. Develop numerical ground-water model

Data collection

Need

Purpose

climate
streamflow
water levels,
salinity, pumping

recharge
ground-water discharge
aquifer properties and
connection between areas

GIS Water Budget

Rainfall+Fog Drip

Evaporation

Runoff

Land cover

Soils

Recharge

Numerical Ground-Water Model

- Mathematical representation of a ground-water system
- Best tool for understanding a system
- Predictive management approach

Time Lines

Task	2003	2004	2005	2006	2007
Data review		-			
Data collection	_				
Water budget				•	
Numerical model				-	

Current Status of Iao and Waihee Aquifer Areas

Waiehu Deep Monitor Well

Waiehu Deep Monitor Well

lao and Waihee web pages http://hi.water.usgs.gov

Climate-Station Sites

≥USGS

CDOLIND WATER																	
GROUND WATER	N. 00	D 00	1. 04	F.1.04	1104	1 0.4	14. 04	1 04	1 104	A 04	0 01	0.101	N. 04	D . 04	I. AE	F.I.AE	1405
Site	Nov-03	Dec-03	Jan-04	Feb-04	Mar-04	Apr-04	May-04	Jun-04	Jul-04	Aug-04	Sep-04	Oct-04	Nov-04	Dec-04	Jan-05	Feb-05	Mar-05
17	1																
Kanoa 1																	
Kanoa 2																	
North Waihee 1																	
North Waihee 2																	
Kanoa TH																	
Kupaa 1																	
						ļ.	ļ.	ļ.									
Waihee 1																	
Waihee 2																	
Waihee 3																	
Waiehu Hts. 1																	
Waiehu Hts. 2																	
Mokuhau 1 (Pump 2)																	
Mokuhau 2 (Pump 1)																	
Mokuhau 3 (Pump 3)																	
Wailuku Shaft 33																	
Kepaniwai Monitor		·	·		·		·	·			·						
Waihee TH A1																	
Waiehu TH B																	
Waiehu Deep Monitor																	
Waikapu 1																	
Waikapu 2																	
Central Power Plant																	
Pump 5																	
Pump 6																	
Pump 7																	
-						-											

Aquifer parameters from tidal response data

Central Power Plant, 5327-07:

Distance from coast: 3,400 ft

Length of signal: 47 days

Phase lag: 1.7 hours

Tidal efficiency: 15.2 %

able to calculate:

Aquifer diffusivity (T/S)

Synoptic water-level survey

- Measure water level on same day at many different wells
- Provides snapshot of water-table
- Useful for estimating ground-water flow
- Calibration target for numerical model
- Last done in December, 1970
- All cooperation is welcome!

Measuring point resurvey

Benchmark elevation using GPS

Water-level measurement

Plans for the next 6 months

- GPS survey of benchmarks; May 9-11
 - Need access from well owners
 - Can use 2 volunteers for GPS survey
- Synoptic water-level survey; May-June
 - Need access from well owners
 - Can use experienced volunteers and calibrated tapes for measurements
- Seepage runs in Waiehu and Makamakaole Streams; June
 - Need access from land owners
 - Can use experienced guides for reconnaissance

Plans for the next 6 months

- Remove climate stations; September
 - Any interest in continued monitoring?
- Calculate water budget; begin July
 - Need water-use data by end of June
 - Otherwise, we will estimate based on historic information
- Construct numerical model; begin September
 - -Establish a modeling sub-goup

Any questions?

